Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 353
Filter
1.
Hum Mol Genet ; 33(10): 905-918, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38449065

ABSTRACT

Mutations in AIFM1, encoding for apoptosis-inducing factor (AIF), cause AUNX1, an X-linked neurologic disorder with late-onset auditory neuropathy (AN) and peripheral neuropathy. Despite significant research on AIF, there are limited animal models with the disrupted AIFM1 representing the corresponding phenotype of human AUNX1, characterized by late-onset hearing loss and impaired auditory pathways. Here, we generated an Aifm1 p.R450Q knock-in mouse model (KI) based on the human AIFM1 p.R451Q mutation. Hemizygote KI male mice exhibited progressive hearing loss from P30 onward, with greater severity at P60 and stabilization until P210. Additionally, muscle atrophy was observed at P210. These phenotypic changes were accompanied by a gradual reduction in the number of spiral ganglion neuron cells (SGNs) at P30 and ribbons at P60, which coincided with the translocation of AIF into the nucleus starting from P21 and P30, respectively. The SGNs of KI mice at P210 displayed loss of cytomembrane integrity, abnormal nuclear morphology, and dendritic and axonal demyelination. Furthermore, the inner hair cells and myelin sheath displayed abnormal mitochondrial morphology, while fibroblasts from KI mice showed impaired mitochondrial function. In conclusion, we successfully generated a mouse model recapitulating AUNX1. Our findings indicate that disruption of Aifm1 induced the nuclear translocation of AIF, resulting in the impairment in the auditory pathway.


Subject(s)
Apoptosis Inducing Factor , Cell Nucleus , Disease Models, Animal , Animals , Apoptosis Inducing Factor/genetics , Apoptosis Inducing Factor/metabolism , Mice , Humans , Cell Nucleus/metabolism , Cell Nucleus/genetics , Male , Mutation , Spiral Ganglion/metabolism , Spiral Ganglion/pathology , Hearing Loss/genetics , Hearing Loss/pathology , Hearing Loss/metabolism , Gene Knock-In Techniques , Protein Transport , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Inner/pathology , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Muscular Atrophy/metabolism
2.
Acta Otolaryngol ; 142(6): 455-462, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35723705

ABSTRACT

BACKGROUND: This study was focused on impulse noise induces hidden hearing loss. OBJECTIVES: This study was designed to determine the morphology changes of noise-induced hidden hearing loss (NIHHL). METHOD: Fifteen guinea pigs were divided into three groups: noise-induced hidden hearing loss (NIHHL) group, noise-induced hearing loss (NIHL) group, and normal control group. For the NIHHL group, guinea pigs were exposed to 15 times of impulse noise with peak intensity of 163 dB SPL at one time. For the NIHL group, animals were exposed to two rounds of 100 times impulse noise, and the time interval is 24 h. Auditory brain response (ABR) was tested before, immediately, 24 h, one week, and one month after noise exposure to evaluate cochlear physiology changes. One month after noise exposure, all guinea pigs in three groups were sacrificed, and basement membranes were carefully dissected immediately after ABR tests. The cochlea samples were observed by transmission electron microscopy (TEM) to find out the morphology changes. RESULT: The ABR results showed that 15 times of impulse noise exposure could cause NIHHL in guinea pigs and 200 times could cause completely hearing loss. Impulse noise exposure could cause a dramatic increase of mitochondria in the inner hair cell. The structures of ribbon synapse and heminode were also obviously impaired compared to the normal group. The nerve fiber and myelin sheath remained intact after impulse noise exposure. CONCLUSION: This research revealed that impulse noise could cause hidden hearing loss, and the changes in inner hair cells, ribbon synapse, and heminode all played a vital role in the pathogenesis of hidden hearing loss.


Subject(s)
Hearing Loss, Noise-Induced , Animals , Auditory Threshold , Cochlea/pathology , Evoked Potentials, Auditory, Brain Stem/physiology , Guinea Pigs , Hair Cells, Auditory, Inner/pathology , Hearing Loss, Noise-Induced/etiology , Hearing Loss, Noise-Induced/prevention & control , Synapses
3.
Hear Res ; 422: 108533, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35671600

ABSTRACT

Cochlear synaptopathy, the loss of or damage to connections between auditory-nerve fibers (ANFs) and inner hair cells (IHCs), is a prominent pathology in noise-induced and age-related hearing loss. Here, we investigated if degeneration of the olivocochlear (OC) efferent innervation is also a major aspect of the synaptopathic ear, by quantifying the volume and spatial organization of its cholinergic and dopaminergic components, using antibodies to vesicular acetylcholine transporter (VAT) and tyrosine hydroxylase (TH), respectively. CBA/CaJ male mice were examined 1 day to 8 months after a synaptopathic noise exposure, and compared to unexposed age-matched controls and unexposed aged mice at 24-28 months. In normal ears, cholinergic lateral (L)OC terminals were denser in the apical half of the cochlea and on the modiolar side of the inner hair cells (IHCs), where ANFs of low-spontaneous rate are typically found, while dopaminergic terminals were more common in the basal third of the cochlea and, re the IHC axes, were offset towards the habenula with respect to cholinergic terminals. The noise had only small and transient effects on the density of LOC innervation, its spatial organization around the IHC axes, or the extent to which TH and VAT signal were colocalized. The synaptopathic noise also had relatively small and transient effects on cholinergic innervation density in the outer hair cell (OHC) area, which normally peaks in the 16 kHz region and falls monotonically towards higher and lower frequencies. In contrast, in the aged ears, there was massive degeneration of OHC efferents, especially in the apical half of the cochlea, where there was also significant loss of OHCs. In the IHC area, there was significant loss of cholinergic terminals in both apical and basal regions and of dopaminergic innervation in the basal half. Furthermore, the cholinergic terminals in the aged ears spread from their normal clustering near the IHC basolateral pole, where the ANF synapses are found, to positions up and down the IHC somata and regions of the neuropil closer to the habenula. This apparent migration was most striking in the apex, where the hair cell pathology was greatest, and may be a harbinger of impending hair cell death.


Subject(s)
Cochlea , Hearing Loss, Noise-Induced , Male , Mice , Animals , Mice, Inbred CBA , Cochlea/physiology , Noise/adverse effects , Hair Cells, Auditory, Inner/pathology , Hair Cells, Auditory, Outer/pathology , Hearing Loss, Noise-Induced/pathology , Cholinergic Agents/metabolism
4.
Int J Numer Method Biomed Eng ; 38(5): e3582, 2022 05.
Article in English | MEDLINE | ID: mdl-35150464

ABSTRACT

A biophysically inspired signal processing model of the human cochlea is deployed to simulate the effects of specific noise-induced inner hair cell (IHC) and outer hair cell (OHC) lesions on hearing thresholds, cochlear compression, and the spectral and temporal features of the auditory nerve (AN) coding. The model predictions were evaluated by comparison with corresponding data from animal studies as well as human clinical observations. The hearing thresholds were simulated for specific OHC and IHC damages and the cochlear nonlinearity was assessed at 0.5 and 4 kHz. The tuning curves were estimated at 1 kHz and the contributions of the OHC and IHC pathologies to the tuning curve were distinguished by the model. Furthermore, the phase locking of AN spikes were simulated in quiet and in presence of noise. The model predicts that the phase locking drastically deteriorates in noise indicating the disturbing effect of background noise on the temporal coding in case of hearing impairment. Moreover, the paper presents an example wherein the model is inversely configured for diagnostic purposes using a machine learning optimization technique (Nelder-Mead method). Accordingly, the model finds a specific pattern of OHC lesions that gives the audiometric hearing loss measured in a group of noise-induced hearing impaired humans.


Subject(s)
Hearing Loss, Noise-Induced , Animals , Auditory Threshold/physiology , Cochlea/pathology , Hair Cells, Auditory, Inner/pathology , Hair Cells, Auditory, Inner/physiology , Hair Cells, Auditory, Outer/pathology , Hair Cells, Auditory, Outer/physiology , Hearing Loss, Noise-Induced/pathology
5.
Hear Res ; 415: 108441, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35065507

ABSTRACT

The acoustic startle reflex (ASR) amplitude can be enhanced or suppressed by noise-induced hearing loss or age-related hearing loss; however, little is known about how the ASR changes when ototoxic drugs destroy outer hair cells (OHCs) and inner hair cells (IHCs). High doses of 2-hydroxypropyl-beta-cyclodextrin (HPßCD), a cholesterol-lowering drug used to treat Niemann-Pick Type disease type C1, initially destroy OHCs and then the IHCs 6-8 weeks later. Adult rats were treated with doses of HPßCD designed to produce a diversity of hair cell lesions and hearing losses. When HPßCD destroyed OHCs and IHCs in the extreme base of the cochlea and caused minimal high-frequency hearing loss, the ASR amplitudes were enhanced at 4-, 8- and 16 kHz. Enhanced ASR occurred during the first few weeks post-treatment when only OHCs were missing; little change in the ASR occurred 6-8-WK post-treatment. If HPßCD destroyed most OHCs and many IHCs in the basal half of the cochlea, high-frequency thresholds increased ∼50 dB, and ASR amplitudes were reduced ∼50% at 4-, 8- and 16-kHz. The ASR amplitude reduction occurred in the first few weeks post-treatment when the OHCs were degenerating. The ASR was largely abolished when most of the OHCs were missing over the basal two-thirds of the cochlea and a 40-50 dB hearing loss was present at most frequencies. These results indicate that high-doses of HPßCD generally lead to a decline in ASR amplitude as OHCs degenerate; however, ASR amplitudes were enhanced in a few cases when hair cell loss was confined to the extreme base of the cochlea.


Subject(s)
Cyclodextrins , Presbycusis , Animals , Cochlea/pathology , Hair Cells, Auditory, Inner/pathology , Hair Cells, Auditory, Outer/pathology , Presbycusis/pathology , Rats , Reflex, Startle
6.
PLoS One ; 16(10): e0258158, 2021.
Article in English | MEDLINE | ID: mdl-34597341

ABSTRACT

Age-related hearing loss in humans (presbycusis) typically involves impairment of high frequency sensitivity before becoming progressively more severe at lower frequencies. Pathologies initially affecting lower frequency regions of hearing are less common. Here we describe a progressive, predominantly low-frequency recessive hearing impairment in two mutant mouse lines carrying different mutant alleles of the Klhl18 gene: a spontaneous missense mutation (Klhl18lowf) and a targeted mutation (Klhl18tm1a(KOMP)Wtsi). Both males and females were studied, and the two mutant lines showed similar phenotypes. Threshold for auditory brainstem responses (ABR; a measure of auditory nerve and brainstem neural activity) were normal at 3 weeks old but showed progressive increases from 4 weeks onwards. In contrast, distortion product otoacoustic emission (DPOAE) sensitivity and amplitudes (a reflection of cochlear outer hair cell function) remained normal in mutants. Electrophysiological recordings from the round window of Klhl18lowf mutants at 6 weeks old revealed 1) raised compound action potential thresholds that were similar to ABR thresholds, 2) cochlear microphonic potentials that were normal compared with wildtype and heterozygous control mice and 3) summating potentials that were reduced in amplitude compared to control mice. Scanning electron microscopy showed that Klhl18lowf mutant mice had abnormally tapering of the tips of inner hair cell stereocilia in the apical half of the cochlea while their synapses appeared normal. These results suggest that Klhl18 is necessary to maintain inner hair cell stereocilia and normal inner hair cell function at low frequencies.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cell Cycle Proteins/genetics , Hair Cells, Auditory, Inner/pathology , Hearing Loss/genetics , Presbycusis/genetics , Animals , Cochlea/pathology , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem/physiology , Hair Cells, Auditory, Inner/metabolism , Hearing Loss/pathology , Humans , Mice , Mutation, Missense/genetics , Presbycusis/pathology
7.
Neurobiol Aging ; 108: 133-145, 2021 12.
Article in English | MEDLINE | ID: mdl-34601244

ABSTRACT

Loss of inner hair cell-auditory nerve fiber synapses is considered to be an important early stage of neural presbyacusis. Mass potentials, recorded at the cochlear round window, can be used to derive the neural index (NI), a sensitive measure for pharmacologically-induced synapse loss. Here, we investigate the applicability of the NI for measuring age-related auditory synapse loss in young-adult, middle-aged, and old Mongolian gerbils. Synapse loss, which was progressively evident in the 2 aged groups, correlated weakly with NI when measured at a fixed sound level of 60 dB SPL. However, the NI was confounded by decreases in single-unit firing rates at 60 dB SPL. NI at 30 dB above threshold, when firing rates were similar between age groups, did not correlate with synapse loss. Our results show that synapse loss is poorly reflected in the NI of aged gerbils, particularly if further peripheral pathologies are present. The NI may therefore not be a reliable clinical tool to assess synapse loss in aged humans with peripheral hearing loss.


Subject(s)
Aging/pathology , Hair Cells, Auditory, Inner/pathology , Presbycusis/pathology , Synapses/pathology , Acoustic Stimulation , Animals , Auditory Threshold , Gerbillinae , Presbycusis/physiopathology
8.
Neuropharmacology ; 196: 108707, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34246683

ABSTRACT

Intracochlear electrical stimulation (ES) generated by cochlear implants (CIs) is used to activate auditory nerves to restore hearing perception in deaf subjects and those with residual hearing who use electroacoustic stimulation (EAS) technology. Approximately 1/3 of EAS recipients experience loss of residual hearing a few months after ES activation, but the underlying mechanism is unknown. Clinical evidence indicates that the loss is related to the previous history of noise-induced hearing loss (NIHL). In this report, we investigated the impact of intracochlear ES on oxidative stress levels and synaptic counts in inner hair cells (IHCs) of the apical, middle and basal regions of guinea pigs with normal hearing (NH) and NIHL. Our results demonstrated that intracochlear ES with an intensity of 6 dB above the thresholds of electrically evoked compound action potentials (ECAPs) could induce the elevation of oxidative stress levels, resulting in a loss of IHC synapses near the electrodes in the basal and middle regions of the NH cochleae. Furthermore, the apical region of cochleae with NIHL were more susceptible to synaptic loss induced by relatively low-intensity ES than that of NH cochleae, resulting from the additional elevation of oxidative stress levels and the reduced antioxidant capability throughout the whole cochlea.


Subject(s)
Cochlea/pathology , Cochlear Implants , Electric Stimulation , Hair Cells, Auditory, Inner/pathology , Hearing Loss, Noise-Induced/physiopathology , Oxidative Stress/physiology , Synapses/pathology , Action Potentials/drug effects , Action Potentials/physiology , Aldehydes , Animals , Antioxidants/pharmacology , Cochlea/drug effects , Cochlea/physiopathology , Evoked Potentials, Auditory, Brain Stem , Fatty Acids, Unsaturated/metabolism , Guinea Pigs , Hair Cells, Auditory, Inner/drug effects , Hearing Loss, Noise-Induced/metabolism , Hydroxy Acids/metabolism , Isoindoles/pharmacology , Organoselenium Compounds/pharmacology , Oxidative Stress/drug effects , Severity of Illness Index , Synapses/drug effects , Tyrosine/analogs & derivatives , Tyrosine/drug effects , Tyrosine/metabolism
9.
Sci Rep ; 11(1): 14704, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34282183

ABSTRACT

Blast exposure can induce various types of hearing impairment, including permanent hearing loss, tinnitus, and hyperacusis. Herein, we conducted a detailed investigation of the cochlear pathophysiology in blast-induced hearing loss in mice using two blasts with different characteristics: a low-frequency dominant blast generated by a shock tube and a high-frequency dominant shock wave generated by laser irradiation (laser-induced shock wave). The pattern of sensorineural hearing loss (SNHL) was low-frequency- and high-frequency-dominant in response to the low- and high-frequency blasts, respectively. Pathological examination revealed that cochlear synaptopathy was the most frequent cochlear pathology after blast exposure, which involved synapse loss in the inner hair cells without hair cell loss, depending on the power spectrum of the blast. This pathological change completely reflected the physiological analysis of wave I amplitude using auditory brainstem responses. Stereociliary bundle disruption in the outer hair cells was also dependent on the blast's power spectrum. Therefore, we demonstrated that the dominant frequency of the blast power spectrum was the principal factor determining the region of cochlear damage. We believe that the presenting models would be valuable both in blast research and the investigation of various types of hearing loss whose pathogenesis involves cochlear synaptopathy.


Subject(s)
Ear, Inner/pathology , Hearing Loss, Noise-Induced/pathology , High-Energy Shock Waves/adverse effects , Acoustic Stimulation/adverse effects , Acoustic Stimulation/methods , Animals , Auditory Threshold/physiology , Blast Injuries/etiology , Blast Injuries/pathology , Disease Models, Animal , Ear, Inner/radiation effects , Evoked Potentials, Auditory, Brain Stem/radiation effects , Hair Cells, Auditory, Inner/pathology , Hair Cells, Auditory, Inner/radiation effects , Hearing Loss, Noise-Induced/etiology , Lasers/adverse effects , Male , Mice , Mice, Inbred CBA , Noise/adverse effects
10.
Neurotox Res ; 39(4): 1227-1237, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33900547

ABSTRACT

Paraquat, a superoxide generator, can damage the cochlea causing an ototoxic hearing loss. The purpose of the study was to determine if deletion of Bak, a pro-apoptotic gene, would reduce paraquat ototoxicity or if deletion of Sirt3, which delays age-related hearing loss under caloric restriction, would increase paraquat ototoxicity. We tested these two hypotheses by treating postnatal day 3 cochlear cultures from Bak±, Bak-/-, Sirt3±, Sirt3-/-, and WT mice with paraquat and compared the results to a standard rat model of paraquat ototoxicity. Paraquat damaged nerve fibers and dose-dependently destroyed rat outer hair cells (OHCs) and inner hair cells (IHCs). Rat hair cell loss began in the base of the cochlea with a 10 µM dose and as the dose increased from 50 to 500 µM, the hair cell loss increased near the base of the cochlea and spread toward the apex of the cochlea. Rat OHC losses were consistently greater than IHC losses. Unexpectedly, in all mouse genotypes, paraquat-induced hair cell lesions were maximal near the apex of the cochlea and minimal near the base. This unusual damage gradient is opposite to that seen in paraquat-treated rats and in mice and rats treated with other ototoxic drugs. However, paraquat always induced greater OHC loss than IHC loss in all mouse strains. Contrary to our hypothesis, Bak deficient mice were more vulnerable to paraquat ototoxicity than WT mice (Bak-/- > Bak± > WT), suggesting that Bak plays a protective role against hair cell stress. Also, contrary to expectation, Sirt3-deficient mice did not differ significantly from WT mice, possibly due to the fact that Sirt3 was not experimentally upregulated in Sirt3-expressing mice prior to paraquat treatment. Our results show for the first time a gradient of ototoxic damage in mice that is greater in the apex than the base of the cochlea.


Subject(s)
Hair Cells, Auditory, Inner/drug effects , Hair Cells, Auditory, Outer/drug effects , Herbicides/toxicity , Paraquat/toxicity , Sirtuin 3/deficiency , bcl-2 Homologous Antagonist-Killer Protein/deficiency , Animals , Animals, Newborn , Cells, Cultured , Cochlea/drug effects , Cochlea/metabolism , Cochlea/pathology , Dose-Response Relationship, Drug , Female , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Inner/pathology , Hair Cells, Auditory, Outer/metabolism , Hair Cells, Auditory, Outer/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Culture Techniques , Rats , Rats, Sprague-Dawley , Sirtuin 3/genetics , bcl-2 Homologous Antagonist-Killer Protein/genetics
11.
Hum Mol Genet ; 30(11): 985-995, 2021 05 31.
Article in English | MEDLINE | ID: mdl-33791800

ABSTRACT

P2RX2 encodes the P2X2 receptor, which is an adenosine triphosphate (ATP) gated (purinoreceptor) ion channel. P2RX2 c. 178G > T (p.V60L) mutation was previously identified in two unrelated Chinese families, as the cause of human DFNA41, a form of dominant, early-onset and progressive sensorineural hearing loss. We generated and characterized a knock-in mouse model based on human p.V60L mutation that recapitulates the human phenotype. Heterozygous KI mice started to exhibit hearing loss at 21-day-old and progressed to deafness by 6-month-old. Vestibular dysfunction was also observed in mutant mice. Abnormal morphology of the inner hair cells and ribbon synapses was progressively observed in KI animals suggesting that P2rx2 plays a role in the membrane spatial location of the ribbon synapses. These results suggest that P2rx2 is essential for acoustic information transfer, which can be the molecular mechanism related to hearing loss.


Subject(s)
Hearing Loss, Sensorineural/genetics , Receptors, Purinergic P2X2/genetics , Adenosine Triphosphate/metabolism , Animals , Disease Models, Animal , Gene Knock-In Techniques , Hair Cells, Auditory, Inner/pathology , Hearing Loss, Sensorineural/pathology , Heterozygote , Humans , Mice , Mutation/genetics , Pedigree , Phenotype , Synapses/genetics , Synapses/pathology , Vestibular Diseases/genetics , Vestibular Diseases/pathology
12.
BMC Neurosci ; 22(1): 18, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33752606

ABSTRACT

BACKGROUND: The SCN11A gene, encoded Nav1.9 TTX resistant sodium channels, is a main effector in peripheral inflammation related pain in nociceptive neurons. The role of SCN11A gene in the auditory system has not been well characterized. We therefore examined the expression of SCN11A in the murine cochlea, the morphological and physiological features of Nav1.9 knockout (KO) ICR mice. RESULTS: Nav1.9 expression was found in the primary afferent endings beneath the inner hair cells (IHCs). The relative quantitative expression of Nav1.9 mRNA in modiolus of wild-type (WT) mice remains unchanged from P0 to P60. The number of presynaptic CtBP2 puncta in Nav1.9 KO mice was significantly lower than WT. In addition, the number of SGNs in Nav1.9 KO mice was also less than WT in the basal turn, but not in the apical and middle turns. There was no lesion in the somas and stereocilia of hair cells in Nav1.9 KO mice. Furthermore, Nav1.9 KO mice showed higher and progressive elevated ABR threshold at 16 kHz, and a significant increase in CAP thresholds. CONCLUSIONS: These data suggest a role of Nav1.9 in regulating the function of ribbon synapses and the auditory nerves. The impairment induced by Nav1.9 gene deletion mimics the characters of cochlear synaptopathy.


Subject(s)
Cochlear Nerve/pathology , Hearing Loss, Sensorineural/genetics , NAV1.9 Voltage-Gated Sodium Channel/genetics , Synapses/pathology , Animals , Cochlear Nerve/metabolism , Gene Deletion , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Inner/pathology , Hearing Loss, Sensorineural/metabolism , Hearing Loss, Sensorineural/pathology , Mice , Mice, Inbred ICR , Mice, Knockout , Synapses/metabolism
13.
Arch Toxicol ; 95(3): 1003-1021, 2021 03.
Article in English | MEDLINE | ID: mdl-33495873

ABSTRACT

The peripheral auditory and vestibular systems rely on sensorineural structures that are vulnerable to ototoxic agents that cause hearing loss and/or equilibrium deficits. Although attention has focused on hair cell loss as the primary pathology underlying ototoxicity, evidence from the peripheral vestibular system indicates that hair cell loss during chronic exposure is preceded by synaptic uncoupling from the neurons and is potentially reversible. To determine if synaptic pathology also occurs in the peripheral auditory system, we examined the extent, time course, and reversibility of functional and morphological alterations in cochleae from mice exposed to 3,3'-iminodipropionitrile (IDPN) in drinking water for 2, 4 or 6 weeks. Functionally, IDPN exposure caused progressive high- to low-frequency hearing loss assessed by measurement of auditory brainstem response wave I absolute thresholds and amplitudes. The extent of hearing loss scaled with the magnitude of vestibular dysfunction assessed behaviorally. Morphologically, IDPN exposure caused progressive loss of outer hair cells (OHCs) and synapses between the inner hair cells (IHCs) and primary auditory neurons. In contrast, IHCs were spared from ototoxic damage. Importantly, hearing loss consistent with cochlear synaptopathy preceded loss of OHCs and synapses and, moreover, recovered if IDPN exposure was stopped before morphological pathology occurred. Our observations suggest that synaptic uncoupling, perhaps as an early phase of cochlear synaptopathy, also occurs in the peripheral auditory system in response to IDPN exposure. These findings identify novel mechanisms that contribute to the earliest stages of hearing loss in response to ototoxic agents and possibly other forms of acquired hearing loss.


Subject(s)
Cochlea/drug effects , Hearing Loss/chemically induced , Nitriles/toxicity , Ototoxicity/etiology , Animals , Cochlea/pathology , Evoked Potentials, Auditory, Brain Stem/drug effects , Hair Cells, Auditory, Inner/drug effects , Hair Cells, Auditory, Inner/pathology , Hair Cells, Auditory, Outer/drug effects , Hair Cells, Auditory, Outer/pathology , Hearing Loss/physiopathology , Male , Mice , Mice, 129 Strain , Nitriles/administration & dosage , Ototoxicity/physiopathology , Synapses/drug effects , Synapses/pathology , Time Factors
14.
Hum Genet ; 140(6): 915-931, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33496845

ABSTRACT

Deafness, the most frequent sensory deficit in humans, is extremely heterogeneous with hundreds of genes involved. Clinical and genetic analyses of an extended consanguineous family with pre-lingual, moderate-to-profound autosomal recessive sensorineural hearing loss, allowed us to identify CLRN2, encoding a tetraspan protein, as a new deafness gene. Homozygosity mapping followed by exome sequencing identified a 14.96 Mb locus on chromosome 4p15.32p15.1 containing a likely pathogenic missense variant in CLRN2 (c.494C > A, NM_001079827.2) segregating with the disease. Using in vitro RNA splicing analysis, we show that the CLRN2 c.494C > A variant leads to two events: (1) the substitution of a highly conserved threonine (uncharged amino acid) to lysine (charged amino acid) at position 165, p.(Thr165Lys), and (2) aberrant splicing, with the retention of intron 2 resulting in a stop codon after 26 additional amino acids, p.(Gly146Lysfs*26). Expression studies and phenotyping of newly produced zebrafish and mouse models deficient for clarin 2 further confirm that clarin 2, expressed in the inner ear hair cells, is essential for normal organization and maintenance of the auditory hair bundles, and for hearing function. Together, our findings identify CLRN2 as a new deafness gene, which will impact future diagnosis and treatment for deaf patients.


Subject(s)
Amino Acid Substitution , Chromosomes, Human, Pair 4/chemistry , Hair Cells, Auditory, Inner/metabolism , Hearing Loss, Sensorineural/genetics , Membrane Proteins/genetics , Point Mutation , Tetraspanins/genetics , Adult , Alleles , Animals , Base Sequence , Chromosome Mapping , Consanguinity , Female , Gene Expression , Genes, Recessive , Hair Cells, Auditory, Inner/pathology , Hearing Loss, Sensorineural/metabolism , Hearing Loss, Sensorineural/pathology , Humans , Male , Membrane Proteins/deficiency , Mice , Pedigree , Tetraspanins/deficiency , Exome Sequencing , Zebrafish
15.
PLoS Comput Biol ; 17(1): e1008499, 2021 01.
Article in English | MEDLINE | ID: mdl-33481777

ABSTRACT

Hidden hearing loss (HHL) is an auditory neuropathy characterized by normal hearing thresholds but reduced amplitudes of the sound-evoked auditory nerve compound action potential (CAP). In animal models, HHL can be caused by moderate noise exposure or aging, which induces loss of inner hair cell (IHC) synapses. In contrast, recent evidence has shown that transient loss of cochlear Schwann cells also causes permanent auditory deficits in mice with similarities to HHL. Histological analysis of the cochlea after auditory nerve remyelination showed a permanent disruption of the myelination patterns at the heminode of type I spiral ganglion neuron (SGN) peripheral terminals, suggesting that this defect could be contributing to HHL. To shed light on the mechanisms of different HHL scenarios observed in animals and to test their impact on type I SGN activity, we constructed a reduced biophysical model for a population of SGN peripheral axons whose activity is driven by a well-accepted model of cochlear sound processing. We found that the amplitudes of simulated sound-evoked SGN CAPs are lower and have greater latencies when heminodes are disorganized, i.e. they occur at different distances from the hair cell rather than at the same distance as in the normal cochlea. These results confirm that disruption of heminode positions causes desynchronization of SGN spikes leading to a loss of temporal resolution and reduction of the sound-evoked SGN CAP. Another mechanism resulting in HHL is loss of IHC synapses, i.e., synaptopathy. For comparison, we simulated synaptopathy by removing high threshold IHC-SGN synapses and found that the amplitude of simulated sound-evoked SGN CAPs decreases while latencies remain unchanged, as has been observed in noise exposed animals. Thus, model results illuminate diverse disruptions caused by synaptopathy and demyelination on neural activity in auditory processing that contribute to HHL as observed in animal models and that can contribute to perceptual deficits induced by nerve damage in humans.


Subject(s)
Hearing Loss/physiopathology , Myelin Sheath , Synapses , Animals , Cochlea/physiopathology , Cochlear Nerve/physiopathology , Disease Models, Animal , Hair Cells, Auditory, Inner/pathology , Hair Cells, Auditory, Inner/physiology , Mice , Models, Neurological , Myelin Sheath/pathology , Myelin Sheath/physiology , Spiral Ganglion/cytology , Spiral Ganglion/physiopathology , Synapses/pathology , Synapses/physiology
16.
PLoS One ; 16(1): e0243903, 2021.
Article in English | MEDLINE | ID: mdl-33411811

ABSTRACT

Tinnitus, the phantom perception of sound, often occurs as a clinical sequela of auditory traumas. In an effort to develop an objective test and therapeutic approach for tinnitus, the present study was performed in blast-exposed rats and focused on measurements of auditory brainstem responses (ABRs), prepulse inhibition of the acoustic startle response, and presynaptic ribbon densities on cochlear inner hair cells (IHCs). Although the exact mechanism is unknown, the "central gain theory" posits that tinnitus is a perceptual indicator of abnormal increases in the gain (or neural amplification) of the central auditory system to compensate for peripheral loss of sensory input from the cochlea. Our data from vehicle-treated rats supports this rationale; namely, blast-induced cochlear synaptopathy correlated with imbalanced elevations in the ratio of centrally-derived ABR wave V amplitudes to peripherally-derived wave I amplitudes, resulting in behavioral evidence of tinnitus. Logistic regression modeling demonstrated that the ABR wave V/I amplitude ratio served as a reliable metric for objectively identifying tinnitus. Furthermore, histopathological examinations in blast-exposed rats revealed tinnitus-related changes in the expression patterns of key plasticity factors in the central auditory pathway, including chronic loss of Arc/Arg3.1 mobilization. Using a formulation of N-acetylcysteine (NAC) and disodium 2,4-disulfophenyl-N-tert-butylnitrone (HPN-07) as a therapeutic for addressing blast-induced neurodegeneration, we measured a significant treatment effect on preservation or restoration of IHC ribbon synapses, normalization of ABR wave V/I amplitude ratios, and reduced behavioral evidence of tinnitus in blast-exposed rats, all of which accorded with mitigated histopathological evidence of tinnitus-related neuropathy and maladaptive neuroplasticity.


Subject(s)
Acetylcysteine , Benzenesulfonates , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem/drug effects , Hair Cells, Auditory, Inner/metabolism , Hearing Loss, Noise-Induced , Tinnitus , Acetylcysteine/pharmacology , Acetylcysteine/therapeutic use , Animals , Benzenesulfonates/pharmacology , Benzenesulfonates/therapeutic use , Biomarkers/metabolism , Hair Cells, Auditory, Inner/pathology , Hearing Loss, Noise-Induced/drug therapy , Hearing Loss, Noise-Induced/physiopathology , Male , Rats , Tinnitus/drug therapy , Tinnitus/physiopathology
17.
Otolaryngol Clin North Am ; 54(1): 189-200, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33243375

ABSTRACT

Sensorineural hearing loss is caused by irreversible loss of auditory hair cells and/or neurons and is increasing in prevalence. Hair cells and neurons do not regenerate after damage, but novel regeneration therapies based on small molecule drugs, gene therapy, and cell replacement strategies offer promising therapeutic options. Endogenous and exogenous regeneration techniques are discussed in context of their feasibility for hair cell and neuron regeneration. Gene therapy and treatment of synaptopathy represent promising future therapies. Minimally invasive endoscopic ear surgery offers a viable approach to aid in delivery of pharmacologic compounds, cells, or viral vectors to the inner ear for all of these techniques.


Subject(s)
Drug Delivery Systems , Endoscopy/methods , Hearing Loss, Sensorineural/therapy , Animals , Ear, Inner/drug effects , Ear, Inner/physiopathology , Genetic Therapy/methods , Hair Cells, Auditory, Inner/pathology , Hearing Loss, Sensorineural/physiopathology , Humans , Minimally Invasive Surgical Procedures/methods , Regeneration , Spiral Ganglion/physiopathology
18.
Proc Natl Acad Sci U S A ; 117(47): 29894-29903, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33168709

ABSTRACT

Transmembrane channel-like protein 1 (TMC1) and lipoma HMGIC fusion partner-like 5 (LHFPL5) are recognized as two critical components of the mechanotransduction complex in inner-ear hair cells. However, the physical and functional interactions of TMC1 and LHFPL5 remain largely unexplored. We examined the interaction between TMC1 and LHFPL5 by using multiple approaches, including our recently developed ultrasensitive microbead-based single-molecule pulldown (SiMPull) assay. We demonstrate that LHFPL5 physically interacts with and stabilizes TMC1 in both heterologous expression systems and in the soma and hair bundle of hair cells. Moreover, the semidominant deafness mutation D572N in human TMC1 (D569N in mouse TMC1) severely disrupted LHFPL5 binding and destabilized TMC1 expression. Thus, our findings reveal previously unrecognized physical and functional interactions of TMC1 and LHFPL5 and provide insights into the molecular mechanism by which the D572N mutation causes deafness. Notably, these findings identify a missing link in the currently known physical organization of the mechanotransduction macromolecular complex. Furthermore, this study has demonstrated the power of the microbead-based SiMPull assay for biochemical investigation of rare cells such as hair cells.


Subject(s)
Deafness/genetics , Hair Cells, Auditory, Inner/pathology , Mechanotransduction, Cellular/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Animals , COS Cells , CRISPR-Cas Systems/genetics , Chlorocebus aethiops , Deafness/pathology , Disease Models, Animal , Gene Knock-In Techniques , HEK293 Cells , Hair Cells, Auditory, Inner/metabolism , Humans , Membrane Proteins/isolation & purification , Mice , Mice, Transgenic , Point Mutation , Protein Binding/genetics , Two-Hybrid System Techniques
20.
Physiol Res ; 69(5): 775-785, 2020 11 16.
Article in English | MEDLINE | ID: mdl-32901490

ABSTRACT

Sensorineural hearing loss and vertigo, resulting from lesions in the sensory epithelium of the inner ear, have a high incidence worldwide. The sensory epithelium of the inner ear may exhibit extreme degeneration and is transformed to flat epithelium (FE) in humans and mice with profound sensorineural hearing loss and/or vertigo. Various factors, including ototoxic drugs, noise exposure, aging, and genetic defects, can induce FE. Both hair cells and supporting cells are severely damaged in FE, and the normal cytoarchitecture of the sensory epithelium is replaced by a monolayer of very thin, flat cells of irregular contour. The pathophysiologic mechanism of FE is unclear but involves robust cell division. The cellular origin of flat cells in FE is heterogeneous; they may be transformed from supporting cells that have lost some features of supporting cells (dedifferentiation) or may have migrated from the flanking region. The epithelial-mesenchymal transition may play an important role in this process. The treatment of FE is challenging given the severe degeneration and loss of both hair cells and supporting cells. Cochlear implant or vestibular prosthesis implantation, gene therapy, and stem cell therapy show promise for the treatment of FE, although many challenges remain to be overcome.


Subject(s)
Ear, Inner/pathology , Epithelium/pathology , Hair Cells, Auditory, Inner/pathology , Hearing Loss, Sensorineural/pathology , Animals , Ear, Inner/injuries , Ear, Inner/metabolism , Epithelial-Mesenchymal Transition , Epithelium/injuries , Hair Cells, Auditory, Inner/metabolism , Hearing Loss, Sensorineural/metabolism , Humans , Noise/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...